

Truth Table

Inputs						Inputs/Outputs (Note 1)		Operating Mode
OEAB	OEBA	CPAB	CPBA	SAB	SBA	A_{0} thru A_{7}	B_{0} thru B_{7}	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	\sim	\sim	X	X			Store A and B Data
X	H	\sim	H or L	X	X	Input	Not Specified	Store A, Hold B
H	H	\sim	\sim	X	X	Input	Output	Store A in Both Registers
L	X	H or L	\sim	X	X	Not Specified	Input	Hold A, Store B
L	L	\sim	\sim	X	X	Output	Input	Store B in Both Registers
L	L	X	X	X	L	Output	Input	Real-Time B Data to A Bus
L	L	X	H or L	X	H			Store B Data to A Bus
H	H	X	X	L	X	Input	Output	Real-Time A Data to B Bus
H	H	H or L	X	H	X			Stored A Data to B Bus
H	L	H or L	H or L	H	H	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

L = LOW Voltage Level
X = Immaterial
$\sim=$ LOW to HIGH Clock Transition
Note 1: The data output functions may be enabled or disabled by various signals at OEAB or $\overline{O E B A}$ inputs. Data input functions are always enabled, i.e. data at the bus pins will be stored on every LOW to HIGH transition on the clock inputs.

Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both.
The select (SAB, SBA) controls can multiplex stored and real-time.
The examples in Figure 1 demonstrate the four fundamental bus-management functions that can be performed with the ABT652.

Data on the A or B data bus, or both, can be stored in the internal D flip-flop by LOW to HIGH transitions at the appropriate Clock Inputs (CPAB, CPBA) regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal D flip-flops by simultaneously enabling OEAB and $\overline{O E B A}$. In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in a HIGH impedance state, each set of bus lines will remain at its last state.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

FIGURE 1.

Absolute Maximum Ratings(Note 2)
Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 3)
Input Current (Note 3)
Voltage Applied to Any Output in the Disable or Power-Off State in the HIGH State
Current Applied to Output
in LOW State (Max)
DC Latchup Source Current
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

-30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
$-500 \mathrm{~mA}$

Over Voltage Latchup (I/O)
10V
Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V
Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$	
\quad Data Input	$50 \mathrm{mV} / \mathrm{ns}$
Enable Input	$20 \mathrm{mV} / \mathrm{ns}$
Clock Input	$100 \mathrm{mV} / \mathrm{ns}$

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ (Non I/O Pins)
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA},\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA},\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}, \text { (Non-I/O Pins) }$ All Other Pins Grounded
I_{H}	Input HIGH Current			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Non-I/O Pins) }(\text { Note } 4) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { (Non-I/O Pins) } \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ (Non-1/O Pins)
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
1 IL	Input LOW Current			$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Non-I/O Pins) }(\text { Note } 4) \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \text { (Non-I/O Pins) } \end{aligned}$
$\begin{aligned} & \mathrm{l}_{\mathrm{IH}+} \\ & \mathrm{l}_{\mathrm{OZH}} \end{aligned}$	Output Leakage Current			10	$\mu \mathrm{A}$	0V-5.5V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) ; \\ & \overline{\mathrm{OEBA}}=2.0 \mathrm{~V} \text { and } \mathrm{OEAB}=\mathrm{GND}=2.0 \mathrm{~V} \end{aligned}$
$I_{\text {IL }}+I_{\text {OZL }}$	Output Leakage Current			-10	$\mu \mathrm{A}$	0V-5.5V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) ; \\ & \overline{\mathrm{OEBA}}=2.0 \mathrm{~V} \text { and } \mathrm{OEAB}=\mathrm{GND}=2.0 \mathrm{~V} \end{aligned}$
Ios	Output Short-Circuit Current	-100		-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0 V\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(A_{n}, \mathrm{~B}_{\mathrm{n}}\right)$
Izz	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$; All Others GND
${ }_{\text {ICCH }}$	Power Supply Current			250	$\mu \mathrm{A}$	Max	All Outputs HIGH
$\mathrm{I}_{\text {CLL }}$	Power Supply Current			30	mA	Max	All Outputs LOW
${ }^{\text {ccz }}$	Power Supply Current			50	$\mu \mathrm{A}$	Max	Outputs 3-STATE; All others at V_{CC} or GND
$\mathrm{I}_{\text {CCT }}$	Additional $\mathrm{ICC}^{\text {/ }}$ Input			2.5	mA	Max	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ All others at V_{CC} or GND
${ }^{\text {CCD }}$	Dynamic I_{CC} (Note 6)			0.18	mA/MHz	Max	Outputs Open (Note 5) $\mathrm{OEAB}=\overline{\mathrm{OEBA}}=\mathrm{GND}$ One bit toggling, 50% duty cycle
Note 4: Guaranteed but not tested. Note 5: For 8 outputs toggling, $\mathrm{I}_{\mathrm{CCD}}<1.4 \mathrm{~mA} / \mathrm{MHz}$. Note 6: Guaranteed, but not tested.							

DC Electrical Characteristics

（solc package）

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	$\begin{gathered} \text { Conditions } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}		0.6	0.8	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 7）
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	－1．2	－0．9		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 7）
$\mathrm{V}_{\text {OHV }}$	Minimum HIGH Level Dynamic Output Voltage	2.5	3.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 8）
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	2.2	1.8		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 9）
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage		0.8	0.4	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 9）

Note 7：Max number of outputs defined as（ n ）． $\mathrm{n}-1$ data inputs are driven OV to 3 V ．One output at LOW．Guaranteed，but not tested．
Note 8：Max number of outputs defined as（ n ）． $\mathrm{n}-1$ data inputs are driven 0 V to 3 V ．One output HIGH．Guaranteed，but not tested．
Note 9：Max number of data inputs（ n ）switching． $\mathrm{n}-1$ inputs switching 0 V to 3 V ．Input－under－test switching： 3 V to threshold（ $\mathrm{V}_{\text {ILD }}$ ）， 0 V to threshold（ $\mathrm{V}_{\mathrm{IHD}}$ ）． Guaranteed，but not tested．

AC Electrical Characteristics

（SOIC and SSOP Package）

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Max Clock Frequency	200			200		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Clock to Bus	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Bus to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay SBA or SAB to A_{n} to B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time $\overline{\text { OEBA }}$ or OEAB to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable Time $\overline{\text { OEBA }}$ or OEAB to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	3.7 3.3	6.0 6.0	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW Bus to Clock	1.5		1.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW Bus to Clock	1.0		1.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{W}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse Width, HIGH or LOW	3.0		3.0		ns

Extended AC Electrical Characteristics

(SOIC package):

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 10)		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 1 Output Switching (Note 11)		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 12)		Units
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Clock to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Bus to Bus	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay SBA or SAB to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\text { OEBA }}$ or OEAB to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\text { OEBA }}$ or OEAB to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	(Note 13)		(Note 13)		ns

Note 10: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-toHIGH, HIGH-to-LOW, etc.)

Note 11: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only
Note 12: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-toHIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.
Note 13: The 3-STATE delay times are dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and has been excluded from the datasheet.

Capacitance

Symbol	Parameter	Typ	Units	Conditions $\left(T_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}\right)$
C_{IN}	Input Capacitance	5.0	pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}(\mathrm{non} \mathrm{I} / \mathrm{O}$ pins $)$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}($ Note 19)	I / O Capacitance	11.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$

[^0]AC Loading
*Includes jig and probe capacitance
FIGURE 2. Standard AC Test Load

FIGURE 3. Test Input Signal Levels

Input Pulse Requirements

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{W}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 4. Test Input Signal Requirements

AC Waveforms

FIGURE 5. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

FIGURE 6. Propagation Delay, Pulse Width Waveforms

FIGURE 7. 3-STATE Output HIGH and LOW Enable and Disable Times

74ABT652 Octal Transceivers and Registers with 3-STATE Outputs
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
[^1]
[^0]: Note 19: $\mathrm{C}_{/ / \mathrm{O}}$ is measured at frequency, $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883D, Method 3012.

[^1]: Fairchild does not assume any responsibility for use of any circuitry described, no circuit patert licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

